A Numerical Method to Compute Exactly the Partition Function with Application to $Z(n)$ Theories in Two Dimensions

Gyan Bhanot ${ }^{1,2}$

Received November 15, 1989; revision received January 24, 1990

Abstract

I present a new method to exactly compute the partition function of a class of discrete models in arbitrary dimensions. The time for the computation for an n-state model on an L^{d} lattice scales like $n^{L^{d-1}} n L^{d}$. I show examples of the use of this method by computing the partition function of the 2D Ising and 3 -state Potts models for maximum lattice sizes 10×10 and 8×8, respectively. The critical exponents v and α and the critical temperature one obtains from these are very near the exactly known values. The distribution of zeros of the partition function of the Potts model leads to the conjecture that the ratio of the amplitudes of the specific heat below and above the critical temperature is unity.

KEY WORDS: Potts and Ising models; exact partition function; zeros; exponents; scaling.

In this paper, I will describe a numerical method to compute exactly the partition function of a certain class of discrete models and give examples of its use in two dimensions. The inspiration for this paper came from an old work by Binder. ${ }^{(1)}$

I will illustrate the method by using the simplest possible example, the two-dimensional Ising model on a 2×2 lattice. For the moment, consider open boundary conditions. One starts by enumerating all states of the two spins in the bottom row. For the 2×2 lattice, there are four such states and they are shown in Fig. 1. It is convenient to label the states by the binary digits $00,01,10,11$ corresponding to the values of the spins in an obvious notation that is very useful in the Ising case. I will choose the energy func-

[^0]

Fig. 1. Configurations of two spins in the bottom row of a 2×2 Ising model. The Boltzmann weights corresponding to each configuration are written below the configuration. Blank squares indicate unfilled lattice sites, and bars connecting squares indicate bonds for which the Boltzmann weight is accounted for.
tion so that the energy of a pair 00 is 0 and that of a pair 01 is 1 . The states then have Boltzmann weight $1, u=e^{-\beta}, u$, and 1 , respectively, as shown in Fig. 1. Define two arrays $Z^{\circ}(S)$ and $Z^{n}(S)$ with four storage locations each (i.e., as many storage locations as states of the lowest row of spins). Initialize Z° as follows:

$$
\begin{equation*}
Z^{o}(00)=1, \quad Z^{o}(01)=u, \quad Z^{o}(10)=u, \quad Z^{o}(11)=1 \tag{1}
\end{equation*}
$$

Here the argument of Z^{n} and Z^{o} refers to the spins that are uppermost in each column. Now imagine adding a spin on the top left-hand corner site with value 0 . The configurations will be multiplied by the Boltzmann weights of the vertical bonds generated by the addition of the new spin. These are shown in Fig. 2. The information about these may be stored in Z^{n} by performing the following operation:

$$
\begin{align*}
& Z^{n}(00)=Z^{o}(00)+u Z^{o}(10) \tag{2a}\\
& Z^{n}(01)=Z^{o}(01)+u Z^{o}(11) \tag{2b}
\end{align*}
$$

This clearly accounts for the four states in Fig. 2. For the case when the added spin has value 1 one has to perform two more operations:

$$
\begin{align*}
& Z^{n}(10)=Z^{o}(10)+u Z^{o}(00) \tag{3a}\\
& Z^{n}(11)=Z^{o}(11)+u Z^{o}(01) \tag{3b}
\end{align*}
$$

1×1

1xu

uxu

ux1

Fig. 2. The same as Fig. 1, but now with one more site filled up.

If one looks at Eqs. (2) and (3) and one imagines what happens (as far as the vertical bonds are concerned) when another spin is added in the empty upper right-hand corner, one is led to the following general algorithm for an $L \times L$ system:

For a spin added at site location i, perform the set of operations

$$
\begin{equation*}
Z^{n}(S)=Z^{o}(S)+u Z^{o}\left(S^{\prime}\right) \tag{4}
\end{equation*}
$$

on all the states S. In Eq. (4), S is a string of bits,

$$
\begin{equation*}
S=b_{1} b_{2} \cdots b_{i} \cdots b_{L} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
S^{\prime}=b_{1} b_{2} \cdots \bar{b}_{i} \cdots b_{L} \tag{5b}
\end{equation*}
$$

where \bar{b}_{i} changes 0 to 1 and vice versa. By repeating this algorithm for each spin in a row, all the Boltzmann weights for the vertical bonds generated are accounted for. After the row is completed, one can then account for the horizontal bonds. This is because, given a row of spins in a state $S=b_{1} b_{2} \cdots b_{L}$, one can immediately compute the Boltzmann weight of the bonds connecting these spins. It is given by $u^{k}, k=\sum_{i=1}^{L-1} b_{i} \oplus b_{i+1}$ (for open boundary conditions), where \oplus denotes exclusive OR. Thus, the Boltzmann weight for the horizontal bonds for $Z(S)$ is determined from the binary representation of S. The lattice is thus built up row by row starting from the first row. After all the rows are added, the partition function is calculated as

$$
\begin{equation*}
Z(u)=\sum_{s} Z(S) \tag{6}
\end{equation*}
$$

The procedure described above obviously generalizes to d dimensions, where one builds up the lattice starting from a ($d-1$)-dimensional partition function. The procedure so far may also be generalized to any model, discrete or continuous.

Let us see now why Binder's algorithm is potentially more efficient than the straightforward algorithm of enumerating all the states. The reason is that if there is enough storage at one's disposal, the number of arithmetic operations performed in the method described is much smaller than enumerating all states. To see this, suppose one had a theory where each spin takes on n values. In d dimensions, one would then start by enumerating all the states of the $(d-1)$-dimensional theory. Thus, Z° and Z^{n} each need $n^{L^{d-1}}$ storage locations. Therefore, the storage requirement scales as

$$
\begin{equation*}
\text { Storage } \sim 2 n^{L^{d-1}} \tag{7}
\end{equation*}
$$

Now let us count how many operations are necessary to generate the partition function. For each added spin, one has to update all the $Z(S)$ values and the algorithm analogous to Eq. (4) has n terms in it. Thus, to add L^{\prime} layers of spins takes

$$
\begin{equation*}
\text { Operations } \sim n^{L^{d-1}} n L^{d-1} L^{\prime} \tag{8}
\end{equation*}
$$

steps. On the other hand, the number of states generated is $n^{L^{\prime} L^{d-1}}$ and this is much greater than Eq. (8) for large L, L^{\prime}.

Up to this point, the method is just what was in Binder's paper. ${ }^{(1)}$ The problem with the method as described so far is that after a lot of computations, one ends up with the numerical value for Z at some temperature $1 / \beta$, and to calculate Z for any other temperature, one has to repeat the procedure again. I will show that for a class of models where the energy of a spin pair takes on integer values only, the method can be extended to find the partition function for any temperature from a single sequence of the operations outlined above. For the rest of this paper, I will therefore restrict myself to such systems where the energy of each spin pair is an integer.

As noted above, the procedure described so far generates the value of the partition function at some value of u. To find Z at an arbitrary temperature, one would like instead to find the spectral density function $N(k)$ defined by

$$
\begin{equation*}
Z(u)=\sum_{k=0}^{k_{\max }} N(k) u^{k} \tag{9}
\end{equation*}
$$

where $N(k)$ is the number of states of the system at energy k and $k_{\max }$ is the maximum possible energy (which is obviously finite, since we are on a finite lattice). One can imagine three alternative ways of computing the $N(k)$.

1. Since $Z(u)$ is a polynomial of degree $k_{\max }$, one way to find $\{N(k)\}$ is to calculate $Z(u)$ for $k_{\text {max }}+1$ distinct values of u and then solve the linear system (9). Unfortunately, this requires that $Z(u)$ be calculated to incredible precision, as the coefficient matrix of this system (a Vandermonde matrix ${ }^{(2)}$) is extremely ill conditioned. One possibility would be to use integer values of u and then carry out the computations in exact rational arithmetic. This avoids roundoff problems, but even so, the number of bits needed to write Z completely will be of order $V+V \log (V)$, where $V=L^{d}$. This is certainly a possible procedure, but it will not be considered further here.
2. A second method is to implement the algorithm in symbolic arithmetic: that is, all quantities, instead of being real numbers, are polyno-
mials $p(u)$ (with integer coefficients) in the symbolic variable u. What one actually stores is, of course, the array of coefficients $\left\{a_{k}\right\}_{k=0}^{k_{\text {max }}}$ corresponding to the polynomial $p(u)=\sum_{k=0}^{k_{\text {max }}} a_{k} u^{k}$. The point is that the two fundamental operations in the Binder algorithm-multiplication by u and addition-can easily be implemented on polynomials: on the coefficient array $\left\{a_{k}\right\}$, they correspond simply to shift and vector addition, respectively.

Since operations on polynomials of degree $\leqslant k_{\max }$ are roughly $k_{\max }+1 \sim d L^{d}$ times more costly in storage and CPU time than operations on real numbers, the computational complexity of this algorithm is given by

$$
\begin{gather*}
\text { Storage } \sim 2 n^{L^{d-1}} d L^{d} \tag{10a}\\
\text { Operations } \sim n^{L^{d-1}} n d L^{2 d-1} L^{\prime} \tag{10b}
\end{gather*}
$$

3. The third method, which is the one used here, is a generalization of the second method and in fact includes both the first and the second methods as extreme special cases. It has the advantage that it reduces storage requirements, at the expense of extra computations.

Suppose that we carry out the algorithm in symbolic arithmetic, but now the dummy variable u is assumed to satisfy the additional relation

$$
\begin{equation*}
u^{m}=c \tag{11}
\end{equation*}
$$

where m and c are integers. Then, all computations can be carried out with polynomials of degree $m-1$ only: any higher powers of u are "recycled" into the range $0 \leqslant k \leqslant m-1$ by inserting the appropriate factors of c. For example, if $p(u)$ is the polynomial

$$
\begin{equation*}
p(u)=\sum_{k=0}^{m-1} a_{k} u^{k} \tag{12}
\end{equation*}
$$

then $u p(u)$ is the polynomial

$$
\begin{equation*}
u p(u)=\sum_{k=0}^{m-1} d_{k}^{\prime} u^{k} \tag{13}
\end{equation*}
$$

where

$$
a_{k}^{\prime}=\left\{\begin{array}{lll}
c a_{m-1} & \text { if } & k=0 \tag{14}\\
a_{k-1} & \text { if } & 1 \leqslant k \leqslant m-1
\end{array}\right.
$$

Thus, multiplication by u, which is the crucial step [Eq. (4)] in the algorithm, amounts merely to a circular shift and multiply operation on the
$\left\{a_{k}\right\}$. Of course, this "folding" operation loses information: if at any stage of the algorithm, the true polynomial is

$$
\begin{equation*}
p(u)=\sum_{k=0}^{k_{\max }} a_{k} u^{k} \tag{15}
\end{equation*}
$$

then this method will represent it by the "folded" polynomial

$$
\begin{equation*}
\hat{p}(u)=\sum_{k=0}^{m-1} \hat{a}_{k} u^{k} \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{a}_{k}=\sum_{j=0}^{\operatorname{Inc}\left[\left(k_{\max }-k\right) / m\right]} a_{k+j m} c^{j} \tag{17}
\end{equation*}
$$

In particular, the output of the algorithm will be the "folded" polynomial

$$
\begin{equation*}
\hat{Z}(u)=\sum_{k=0}^{m-1} I_{m}(k) u^{k} \tag{18}
\end{equation*}
$$

whose coefficients are linear combinations of the N 's multiplied by powers of c, namely,

$$
\begin{equation*}
I_{m}(k)=\sum_{j=0}^{\operatorname{Int}\left[\left(k_{\max }-k\right) / m\right]} N(k+j m) c^{j} \tag{19}
\end{equation*}
$$

It is therefore necessary to perform runs at several values of the pair (m, c) and then combine the results (by solving a suitable linear system of equations) so as to reconstruct the $\{N(k)\}$. There are many possibilities on what values of c and m to choose. One extreme is to set $m=1$ and run at $k_{\max }+1$ distinct values of c; this is nothing but method 1 discussed above. Another extreme is to set $m=k_{\max }+1$ (in which case c is irrelevant). This is just method 2 . In general, the best choice is to fix m at the largest value that is allowed by the available computer memory and then run at several values of c. The values $c=0$ and $c=1$ are particularly convenient.

For Ising-like systems, $N(k)$ is symmetric about $k=k_{\max } / 2$. One can therefore get all the $N(k)$ by taking $m=1+k_{\max } / 2$ and $c=0$. If there is not enough storage for this, then one could use $m=1+k_{\max } / 4$ and do two runs, one for $c=0$ and another for $c=1$. If there are still problems of lack of adequate storage, then one can use smaller values of m and other integer values of $c>1$. However, in this case, one must be careful about increasing the accuracy with which the I 's are calculated, because this goes up as the
number of bits in c increases [see Eq. (19)]. For all the examples I have studied in this paper, I have used $c=0$ or $c=1$ and the maximum possible value of m so that I could generate all the N 's using one or two values of c at the most.

We can now evaluate the computational complexity of this method: Suppose first that we take $m=1+\left[k_{\max } / 2\right] \sim d L^{d} / 2$ and $c=0$. Then, the requirements are

$$
\begin{gather*}
\text { Storage } \sim n^{L^{d-1}} d L^{d} \tag{20a}\\
\text { Operations } \tag{20~b}
\end{gather*} \frac{1}{2} n^{n^{d-1}} n d L^{2 d-1} L^{\prime} .
$$

If, on the other hand, we take $m=1+\left[k_{\max } / 4\right] \sim d L^{d} / 4$ and $c=0,1$, then the storage is decreased by a factor of two from the above. However, notice that the total number of operations remains the same. This is because, although one has to do two runs at the different values of c, each run has only half as many operations. In general, if we take $m=1+\left[k_{\max } / 2 p\right]$, then one has to use $c=0,1,2, \ldots, p-1$. The storage requirements are decreased by a factor $\left[\log _{2}(p)\right] / p$, while the total number of operations remains the same.

Thus, the basic idea of the method is the opposite of solving the Vandermonde matrix. Instead of using several values of \mathcal{c} and a fixed, small value of m, which would require one to solve an ill-conditioned system of linear equations, the idea is to use as large an m value as possible with some simple small values of c so that there are only very simple equations to solve to get the N 's from the I 's.

A few important points should be noted before considering examples of this technique. First, note that the I 's will be large integers. One useful way of working with such large integers is to express them as a combination of two integers with an understood exponent e. Thus,

$$
\begin{equation*}
I=\left(j_{1}, j_{2}, e\right)=j_{1}+j_{2} 10^{e} \tag{21}
\end{equation*}
$$

This allows one to extend the lattice sizes one can analyze, assuming of course that there is enough memory and computing power.

Further, the method as described can be used for systems with open or fixed boundary conditions or any combinations of these. One can also study systems where $d-1$ edges have periodic boundary conditions and the remaining one has either open or fixed boundaries. However, the method cannot deal with completely periodic boundary conditions without an enormous increase in storage [approximately the square of Eq. (7)].

I will now present results for the partition function of the two-dimensional Ising model on lattices with open boundary conditions. Table I gives

Table I. Partition Function of 2D Ising Model on 10×10 and 9×9 Lattices with Open Boundary Conditions ${ }^{a}$

k	$N(k), L=10$	$N(k), L=9$
0	2	2
1	0	0
2	8	8
3	80	72
4	228	190
5	480	432
6	2904	2372
7	10160	7776
8	28512	21634
9	94560	70544
10	334188	234492
11	1001600	684336
12	3024428	2025932
13	9390320	6080880
14	28416640	17769272
15	82962176	50670720
16	243286762	144436672
17	706898800	406911200
18	2023979520	1130610188
19	5729054800	3107180888
20	16122614142	8461908280
21	44911259552	22781518288
22	123963179176	60668035684
23	339237864112	159839880584
24	921006159792	416592162178
25	2478596355488	1073633622112
26	6615343595116	2735962636896
27	17508949583072	6892649260024
28	45956908921096	17162325923036
29	119601063089488	42224935085024
30	308624008346184	102625819853840
31	789531362631936	246330597987560
32	2002236996085046	583745350990298
33	5032702605600208	1365335930718616
34	12536459497288912	3150846295183988
35	30943134757697456	7172032090649952
36	75666085125011546	16096607390244494
37	183277438049400480	35608145031851608
38	439653074154090240	77611845404974452
39	1044290798751834512	166612094830696616
40	2455601601917768420	352141101485111164

[^1]Table I. (Continued)

41	5715191389040815680	732463626079434728
42	13162814059194332284	1498779830132023700
43	29992843384392276256	3015720617514065464
44	67599071186609390360	5964319529107745650
45	150667233135443195280	11589328787828817456
46	332009284620770925304	22115178532979996228
47	723154384045443755200	41424843026785397752
48	1556520807467290330780	76132386821095360478
49	3309889486768242553104	137218510027713547336
50	6951780615067563927512	242428684682846167112
51	14417496449048455086144	419637104618984345232
52	29517529554446020699914	711328701410891951820
53	59641642457456972380192	1180209924661787853816
54	118899403477259922266688	1915688893225844215304
55	233802595837168308698272	3040540480740932676272
56	453352171299545237693512	4716498283529419247198
57	866590747690830006960960	7146857891458317367016
58	1632517328306520224110480	10573581547941149882100
59	3029971993219284965273792	1526609784706369752896
60	5538937392772205864531480	21499288224546805917152
61	9969874318295778057009504	29519329716772396767416
62	17664247777693175160765184	39498272853693385575900
63	30796993030990433209084768	51481355461780817578352
64	52819392312885678545436692	65334580863611097487494
65	89086835675183403018200384	80703121534458107878000
66	147717156491450787191527200	96992501635739079414728
67	240717216720664582618430368	113383198675792819701304
68	385392505420278103285005328	128884747013326018242742
69	606010560730521174349765088	142427993043658173714192
70	935618924404472613615285232	152985286453100484078072
71	1417820445219880294868836160	159700376205906735578624
72	2108188036981214349890853640	162005092561274395844676
73	3074872332637786718538528128	
74	4397846115348289348266362648	
75	6166177911372741854646839616	
76	8472780094922056192596717424	
77	11406278305139367741682022656	
78	15040025741661918962336070720	
79	19418830336895331901159821792	
80	24544617788334280985935169068	
81	30362906614552756688751417312	
82	36752464835134069278462022192	
83	43520676858420742955589180512	
84	50406827835779589664889986348	
85	57094646538195969851385893856	
86	63234097112578433100149657552	
87	68470776439937110549310951936	
88	72479675941022541343344445160	
89	74998874149050740350904095104	
90	75858264362008705388932311560	

Fig. 3. The zeros of the Ising model on a 10×10 lattice with open boundary conditions in the $u=e^{-\beta}$ complex plane.
$N(k)$ versus k for lattice sizes 10×10 and 9×9. Since $N(k)$ is symmetric for the Ising model $\left[N(k)=N\left(k_{\max }-k\right), k_{\max }=2 L(L-1)\right]$, I have listed only half the $N(k)$ values in Table I. Note that the number of states on a 10×10 lattice is 2^{100}, which is a rather large number. ${ }^{(3)}$ The amount of computer time necessary to generate Table I was about 1 CPU min on a 2-processor Cray XMP. Whereas there is no intrinsic interest in studying the 2D Ising model numerically, one can use these partition functions to see if any useful predictions for the exponents and critical temperature can be made from

Fig. 4. Test of scaling law [Eq. (23)] for the 2D Ising model. All the zeros in the first quadrant inside the unit circle for $L=7$ to 10 have been used in the plot. The line connects data points corresponding to $L=10$.
exact results on such small systems. In general, I found that if the problem can be made to fit in the computer memory, then the method was so efficient that the CPU time required was only a few seconds.

Since Z is a polynomial in u, its analytic structure is completely determined by its zeros. ${ }^{(4), 3}$ Figure 3 shows all the zeros of the 10×10 Ising system in the complex u plane. Itzykson et al. ${ }^{(6)}$ showed that the distance from the zero closest to the $\operatorname{Re}(u)$ axis scales with lattice size L as $L^{-1 / v}$. Thus, if u_{c} is the infinite-volume critical point and $u_{1}(L)$ is the zero closest to the $\operatorname{Re}(u)$ axis, then,

$$
\begin{align*}
\operatorname{Im}\left[u_{1}(L)\right] & \sim L^{-1 / v}\left[1+O\left(L^{-\omega}\right)\right] \tag{22a}\\
\left|u_{1}(L)-u_{c}\right| & \sim L^{-1 / v}\left[1+O\left(L^{-\omega}\right)\right] \tag{22b}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left[u_{1}(L)\right]-u_{c} \sim L^{-1 / v}\left[1+O\left(L^{-\omega}\right)\right] \tag{22c}
\end{equation*}
$$

In ref. 6 a stronger version of this scaling law is also derived:

$$
\begin{equation*}
\left|u_{j}(L)-u_{c}\right| \sim\left(\frac{j}{L^{d}}\right)^{1 / d v} \tag{23}
\end{equation*}
$$

where $j=1,2,3, \ldots$ label the zeros in order of increasing distance from u_{c}. Figure 4 shows the test of the scaling law of Eq. (23) for the 2D Ising model.

For this model,

$$
\begin{equation*}
u_{c}=\sqrt{2}-1=0.414213 \ldots \quad \text { and } \quad v=1 \tag{24}
\end{equation*}
$$

One possible procedure to extract v and u_{c} from the zeros is to estimate v from successive L values using Eq. (22a) and then use some finite-size extrapolation procedure to find the infinite-volume value of v. After that, one could use Eq. (22c) to find u_{c}. Table II lists the zeros $u_{1}(L)$ for $L=2,3, \ldots, 10$ and estimators $v(L)$ for v defined by

$$
\begin{equation*}
v(L)=-\frac{\log [L /(L+1)]}{\log \left\{\operatorname{Im}\left[u_{1}(L)\right] / \operatorname{Im}\left[u_{1}(L+1)\right]\right\}} \tag{25a}
\end{equation*}
$$

Two alternate estimators for v are

$$
\begin{equation*}
v(L)=-\frac{\log [L /(L+1)]}{\log \left[\left|u_{1}(L)-u_{c}\right| /\left|u_{1}(L+1)-u_{c}\right|\right]} \tag{25b}
\end{equation*}
$$

[^2]Table II. The Zero Closest to the $\operatorname{Re}(u)$ Axis for Various L for the Ising Model and the Estimate $v(L)$ of v from Eq. (25a) ${ }^{a}$

L	$\operatorname{Re}\left(u_{1}(L)\right)$	$\operatorname{Im}\left(u_{1}(L)\right)$	$v(L)$
2	0.00000000000	0.41421356237	1.327491
3	0.20124863451	0.30519306466	1.163236
4	0.26982689144	0.23832440110	1.132630
5	0.30440253447	0.19570710834	1.116694
6	0.32534008878	0.16622629444	1.105160
7	0.33943333762	0.14458498201	1.095899
8	0.34959422031	0.12799880987	1.088160
9	0.35728151256	0.11486763746	1.081566
10	0.36330845658	0.10420557321	

${ }^{a}$ The extrapolated average value obtained by the BST procedure is $v=1.0033$ (21).
and

$$
\begin{equation*}
v(L)=-\frac{\log [L /(L+1)]}{\log \left\{\operatorname{Re}\left[u_{1}(L)-u_{c}\right] / \operatorname{Re}\left[u_{1}(L+1)-u_{c}\right]\right\}} \tag{25c}
\end{equation*}
$$

these estimators require, however, an a priori knowledge of u_{c}. Also, it is obvious from Eq. (22) that for any of these estimators,

$$
\begin{equation*}
v(L)=v\left[1+O\left(L^{-\omega}\right)\right] \tag{26}
\end{equation*}
$$

The extrapolation procedure that I have found to work best is that of Bulirsch and Stoer ${ }^{(7)}$ (BST), which I will now briefly describe. For a general discussion about this method, see ref. 8 . The idea of the extrapolation procedure is that if $T(h)$ is a function with an expansion

$$
\begin{equation*}
T(h)=T_{0}+a_{1} h^{-\omega}+a_{2} h^{-2 \omega}+\cdots \tag{27}
\end{equation*}
$$

and $h_{N}(N=0,1,2, \ldots)$ is a sequence converging to zero as $N \rightarrow \infty$, then, given the values $T\left(h_{N}\right)$ for a sequence of values of h_{N}, the desired limit T_{0} is obtained from a sequence of extrapolants,

$$
\begin{array}{lll}
T_{0}^{(0)} & & \\
T_{0}^{(1)} & T_{1}^{(0)} & \tag{28}\\
T_{0}^{(2)} & T_{1}^{(1)} & T_{2}^{(0)}
\end{array}
$$

etc., where the $T_{m}^{(N)}$ are defined as follows:

$$
\begin{gather*}
T_{-1}^{(N)}=0, \quad T_{0}^{(N)}=T\left(h_{N}\right) \tag{29a}\\
T_{m}^{(N)}=T_{m-1}^{(N+1)}+\left(T_{m-1}^{(N+1)}-T_{m-1}^{(N)}\right) \\
\times\left[\left(\frac{h_{N}}{h_{N+m}}\right)^{\omega}\left(1-\frac{T_{m-1}^{(N+1)}-T_{m-1}^{(N)}}{T_{m-1}^{(N+1)}-T_{m-2}^{(N+1)}}\right)-1\right]^{-1} \tag{29b}
\end{gather*}
$$

Using this algorithm on the $v(L)$ estimates of Table II, one gets the asymptotic estimate

$$
\begin{equation*}
v=1.0009,1.0061,1.0028 \tag{30}
\end{equation*}
$$

from using the data for $L=2-10, L=3-10$, and $L=4-10$, respectively. The extrapolation is not sensitive to the choice of ω and the results quoted are for $\omega=1.0$. Using $v=1$, one can now compute two estimates for u_{c} by using either Eq. (22c) or $\left|u_{1}(L)\right| \sim u_{c}+A L^{-1 / v}$ via the BST procedure just described. One finds

$$
\begin{equation*}
u_{c}=0.414200(11) \tag{31}
\end{equation*}
$$

in excellent agreement with the exact result [Eq. (24)].
I will now generalize the discussion to models where the site variables take on n values. For concreteness and to keep the notation simple, I will discuss $Z(n)$ models in two dimensions. The generalization to arbitrary dimension and models should be obvious after the discussion that follows.

A $Z(n)$ configuration in one dimension is a set S of L numbers $\left\{n_{1}, n_{2}, \ldots, n_{L}\right\}, n_{i} \in[0, n-1]$. The n_{i} label the $Z(n)$ angles $\theta_{i}=2 \pi n_{i} / n$. The one-dimensional system has n^{L} states, which may conveniently be labeled by an integer index,

$$
\begin{equation*}
I_{S}=n_{1}+n n_{2}+n^{2} n_{3}+\cdots+n^{L-1} n_{L} \in\left[0, n^{L}-1\right] \tag{32}
\end{equation*}
$$

Define two arrays $Z^{o}(S)$ and $Z^{n}(S)$ with as many storage locations as states of the 1D system $\left(n^{L}\right)$. The analogue of the iteration step of Eq. (4) that adds one spin n_{i} at location i is

$$
\begin{equation*}
Z^{n}(S)=\sum_{n_{j}=0}^{n-1} e^{-\beta f\left(n_{i}, n_{j}\right)} Z^{o}\left(S^{\prime}\right) \tag{33}
\end{equation*}
$$

where, if

$$
\begin{align*}
S & =\left\{n_{1}, n_{2}, \ldots, n_{i}, \ldots, n_{L}\right\} \tag{34}\\
S^{\prime} & =\left\{n_{1}, n_{2}, \ldots, n_{j}, \ldots, n_{L}\right\} \tag{35}
\end{align*}
$$

Table III. Partition Function of 8×8 and 7×7 Potts Models ${ }^{a}$

k	$N(k), L=8$	$N(k), L=7$
0	3	3
1	0	0
2	24	24
3	192	168
4	552	462
5	2088	1824
6	11304	8928
7	41664	31392
8	148386	111684
9	587688	423216
10	2193300	1510572
11	7720728	5209944
12	27537474	18065964
13	97132296	61574472
14	334271004	206061780
15	1137947376	682080864
16	3843421530	2231687358
17	12818773296	7204443672
18	42298227456	22974767664
19	138314323008	72364170912
20	448089240318	225026403222
21	1438146998664	690610737672
22	4574963788656	2091155349516
23	14425679275296	6243838334808
24	45084393148710	18373853627526
25	139648935821064	53255451879384
26	428680498713156	151934469419988
27	1303884760918824	426346021158288
28	3928871392273452	1175846544042816
29	11725097717341728	3184673584497912
30	34647163889868624	8463104247723672
31	101341900685306232	22046901347978448
32	293316951182710806	56247151958954040
33	839762821791103608	140394144730039800
34	2377287574813856616	342477392173729128
35	6651755879018772480	815579022852671736
36	18388012681028246742	1893850948922891904
37	50197507759057494528	4282946591792482368
38	135261530391980304528	9421173493821644760
39	359582171737685788248	20130654579263172240
40	942609542987942012364	41725664029037517546
41	2435256118061086047552	83776129533272914272
42	6197222628225402131196	162692100725406071196

[^3]Table III. (Continued)

43	15525331268690663280216	305125905414307569912
44	38266501591607687448702	551794823492840197644
45	92739457153227664217544	960654116676351255216
46	220852825261841467774536	1607467280678385203208
47	516475249506545288311200	2581029757581048927600
48	1185251316794994427627662	3970194201945262150176
49	2667365992539518807415072	5841173600439883203384
50	5882384615988642900476148	8206876906647453549192
51	12702839736061440463070376	10994910494946859758312
52	26840668946589754259676888	14025648539287777952328
53	55448545852349178985402152	17013565092668829899472
54	111902904244440315648204204	19601081472428069208468
55	220438862509400023281234456	21423923022906475914096
56	423509755844911966131943386	22193482879885189229832
57	792852114394772914813063968	21771179708605905705072
58	1445082082708563003200717988	20208583131061984494552
59	2561984040351484274712667992	17737512051220595306352
60	4414190770715645825333111376	14712540247365904408134
61	7384487823103609249586152728	11525918044389093098712
62	11983575350216845651701030252	8523526812396935480436
63	18847406776901530038840755136	5946726105595443369456
64	28702569821938615406283871536	3911943600136797267570
65	42286674107265855479396703384	2424780640971368785056
66	60216659100912854864184775656	1415073756435154716312
67	82810752689432279070373530696	776800161495415847832
68	109888579695433911676772905944	400660425263642790030
69	140594239184271472970682554376	193904875439535065760
70	173301245129355686661942833760	87907143578625315684
71	205656994667551360625028442104	37256344099024673568
72	234801608012523583186410329658	14724351321410949000
73	257752570217498791662403969224	5410091775761568144
74	271893301558452182289236489328	1841059284810225696
75	275459037927479172777454264728	577550284153252512
76	267896641445797602342148889448	166040211143267904
77	249997506757499950167839421744	43418679825191256
78	223760992596476098331786106996	10226640750772884
79	192020982026221584599113086888	2141358146070576
80	157933469393418469133577041844	391387088304576
81	124455308426597643394601582784	60773967560208
82	93933916098635721361446124176	7674121598604
83	67882328800513023649649676960	725187096504
84	46953430232080538221573099950	41869995708
85	31073935957604141376395970168	
86	19668537504816747494192265600	
87	11901584764535848096088822256	
88	6881463691876048042749443808	
89	3799769165333395330805121288	

Table III. (Continued)

90	2002421821386729970447589172
91	1006364364920951693202042480
92	481932011135808455486626278
93	219693973804473428011517736
94	95225835793120795037283276
95	39193831062265263418409160
96	15294462722635606819146042
97	5648323125066230867259648
98	1969949490857815597348560
99	647233697269536071777568
100	199738188211753448316636
101	57694563236897928233520
102	15532995049768573552992
103	3877925335950604678368
104	892119601906523571432
105	187616547858204828816
106	35701326530842588188
107	6063375007720464072
108	901707099455080434
109	114132122957405952
110	11738897145225828
111	897937832100888
112	40724629633188

and $f\left(n_{i}, n_{j}\right)$ is the energy of a pair of nearest neighbor spins with $Z(n)$ angles specified by the integers n_{i}, n_{j}. One must perform the iteration step of Eq. (33) once over all the S 's for each spin added. In fact, Eq. (33) is valid for any model and can even be generalized to continuous models by replacing the sum by an integral. However, the procedure is simplest for discrete models and when f is an integer-valued function, so that Z is a polynomial in $u=e^{-\beta}$. I will restrict myself to this case only.

Specifically, for the $Z(n)$ model, one can make f have the required property and still remain in the correct universality class. Define

$$
\begin{equation*}
f\left(n_{i}, n_{j}\right)=\min \left[\left|n_{i}-n_{j}\right|, n-\left|n_{i}-n_{j}\right|\right] \tag{36}
\end{equation*}
$$

This function has the merit of restricting the energy to integer values. One can also write f as a finite Fourier series in terms of the $Z(n)$ angles $\theta_{i j}=2 \pi\left(n_{i}-n_{j}\right) / n$. For even n,

$$
\begin{align*}
f\left(n_{i}, n_{j}\right) & =f\left(n_{i}-n_{j}\right)=f\left(\theta_{i j}\right) \\
& =\frac{n}{4}-\sum_{k=1}^{n-1} \frac{1-(-1)^{k}}{n} \frac{1}{1-\cos (2 \pi k / n)} \cos \left(k \theta_{i j}\right) \tag{37}
\end{align*}
$$

Fig. 5. Zeros of the 8×8 Potts model with open boundary conditions in the complex $u=e^{-\beta}$ plane.

It is obvious that the theory defined by the energy function of Eq. (36) has the same vacuum state as the usual $Z(n)$ theory because the ground state has all spins aligned.

As a nontrivial example, consider the $Z(3)$ model (also called the 3 -state Potts model ${ }^{4}$). Here, $n_{i}=0,1,2$ and

$$
\begin{equation*}
f\left(n_{i}, n_{j}\right)=1-\delta\left(n_{i}, n_{j}\right) \in[0,1] \tag{38}
\end{equation*}
$$

${ }^{4}$ See ref. 9 for a comprehensive view of the Potts model.

Table IV. The First Zero for the Potts Model for Various L Values and the Estimates $v(L)$ of v from Eq. (25) ${ }^{a}$

L	$\operatorname{Re}\left[u_{1}(L)\right]$	$\operatorname{Im}\left[u_{1}(L)\right]$	$v(L)$ Eq. $(25 \mathrm{a})$	$v(L)$ Eq. $(25 \mathrm{~b})$	$v(L)$ Eq. $(25 \mathrm{c})$
2	0.02906309100	0.28739427521	1.536578	0.9506645	0.6866508
3	0.17933073658	0.22073871857	1.177574	0.9823404	0.7780325
4	0.23703749401	0.17289408198	1.091044	0.9816150	0.8231159
5	0.26766654497	0.14091489903	1.045968	0.9731017	0.8469487
6	0.28671621031	0.11837377826	1.016353	0.9632042	0.8602000
7	0.29972800675	0.10171522195	0.994788	0.9537328	0.8677652
8	0.30918364569	0.08893857422			

${ }^{a}$ The exactly known value of $u_{c}=(\sqrt{3}-1) / 2$ is used in columns 5 and 6. Using the BST procedure, one obtains from columns 4,5 , and 6 that $v=0.8386,0.8328$, and 0.8479 from the $L=2-8$ data and $v=0.8342,0.8445$, and 0.8399 from the $L=3-8$ data.

Fig. 6. Test of scaling law [Eq. (23)] for the Potts model on lattices of size $L=6-8$. All zeros in the first quadrant are included. The straight line connects the $L=8$ data.

Table III shows the partition function of this model computed by the method described above for 7×7 and 8×8 lattices. Note again that a very large number of states $\left(\sim 2^{109}\right)$ has been generated. Figure 5 plots all the zeros for the 8×8 lattice and Table IV lists the first zero for various L values and estimates of $v(L)$ using Eq. (25). The critical coupling and the exponents of this model are also known: $u_{c}=(\sqrt{3}-1) / 2$ and $v=5 / 6$. Using the BST procedure, one can extrapolate the $v(L)$ values of Table IV to $L=\infty$ and estimate v. The results are given in Table IV and are surprisingly close to the correct result, given the small lattice sizes used.

Fig. 7. The specific heat at constant volume C_{p} of the Potts model as a function of β for various lattice sizes ($L=2-8$).

Figure 6 is a test of the scaling law of Eq. (23) and the scaling seems to work much better for the Potts model than for the Ising model. Figure 7 plots the specific heat of the model, defined by

$$
\begin{equation*}
C_{v}=\frac{\partial^{2} \log Z}{\partial \beta^{2}} \tag{39}
\end{equation*}
$$

The peak of the specific heat scales like $L^{\alpha / v}$ and Table V shows the β value at the peak, C_{v} at the peak, and the critical exponent estimates extracted from the C_{v} peak. These estimates of $\beta_{c}(L)$ and $\alpha(L) / v(L)$ can be extrapolated to $L=\infty$ to give estimates of β_{c} and α / v, which are given in Table V and are again very close to the correct values.

Finally, ref. 6 also relates the critical exponent α to the angle ϕ that the line of zeros of Z makes with the $\operatorname{Re}(u)$ axis and the ratio A_{\ldots} / A_{+}of the specific heat amplitude below and above the critical temperature (which is a universal quantity). The result [ref. 6, Eq. (1)] is

$$
\begin{equation*}
\tan [(2-\alpha) \phi]=\frac{\cos (\pi \alpha)-A_{-} / A_{+}}{\sin (\pi \alpha)} \tag{40}
\end{equation*}
$$

Figure 8 shows the angle ϕ versus $1 / L$. The horizontal line is the infinitevolume extrapolation, which gives $\phi=0.968(2) \pi / 2$. The error comes from the extrapolation and is estimated by using different sets of L values to make the extrapolation. If one uses this result for ϕ in Eq. (40), one finds $A_{-} / A_{+}=1.10(07)$. Since this value is so close to unity and the angle ϕ is so close to $\pi / 2$, I would conjecture that for the Potts model,

$$
\begin{equation*}
\phi=\pi / 2 \quad \text { and } \quad A_{-} / A_{+}=1 \tag{41}
\end{equation*}
$$

Table V. The Location of the Peak of the Specific Heat C_{v} and lts Maximum Value as a Function of L^{a}

L	$\beta($ peak $)$	$C_{\nu}($ peak $)$	$\alpha / v(L)$
2	1.1345095	0.3422606	0.59470295
3	1.1639425	0.4355910	0.60281669
4	1.1548822	0.5180767	0.59824105
5	1.1410812	0.5920653	0.59139593
6	1.1279001	0.6594731	0.58428310
7	1.1163123	0.7216273	0.57747388
8	1.1063324	0.7794743	

[^4]

Fig. 8. The angle ϕ at which the extrapolated line of zeros intersects the $\operatorname{Re}(u)$ axis. The horizontal line is the extrapolated $L=\infty$ result using the BST formula [Eq. (29)].

In summary, I have described a method that can compute the partition function of certain classes of discrete models (those whose energy takes integer values). Although one is limited to small lattices, the lattice sizes seem sufficient to extract useful information about critical couplings and exponents. One might even hope that by studying the analytic structure of the theory via the zeros of the partition function on small volumes, one might be able to guess the complete analytic solution. In fact, the zeros in Fig. 5 near the $\operatorname{Re}(u)$ axis seem to behave very much like a conic section. This is also in agreement with the observation that the angle ϕ at which the line of zeros meets the $\operatorname{Re}(u)$ axis is almost $\pi / 2$. If this is borne out by studies on larger lattices, one could write down the analytic form for the critical part of the free energy of the Potts model in 2 dimensions. This point is currently being studied.

Finally, the algorithm described in this paper has some similarity with the manipulation of very large integers using residue arithmetic modulo several different primes. ${ }^{(10)}$

ACKNOWLEDGMENTS

This work was supported in part by the U.S. Department of Energy under contract number DE-FC05-85ER250000. I would like to thank the TH Division at CERN, Ecole Normale Supérieure and CEN, Saclay for their hospitality. I had very useful discussions about the ideas presented here with Alain Billoire, Malte Henkel, Apoorva Patel, John Richardson, and Roman Salvador, which are gratefully acknowledged.

REFERENCES

1. K. Binder, Physica 62:508 (1972); see also A. J. Chorin, Commun. Math. Phys. 99:501 (1985); Lei Gong-yan, J. Comput. Phys., to appear.
2. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1985).
3. R. B. Pearson, Phys. Rev. B 26:6285 (1982).
4. C. N. Yang and T. D. Lee, Phys. Rev. 87:404, 410 (1952); M. Fisher, in Lectures in Theoretical Physics, Vol. 12C (University of Colorado Press, Boulder, Colorado, 1965), p. 1.
5. P. Carter and G. Bhanot, Nucl. Phys. B 5A(Proc. Suppl.):334 (1988).
6. C. Itzykson, R. B. Pearson, and J. B. Zuber, Nucl. Phys. B 220:415 (1983).
7. R. Bulirsch and J. Stoer, Numerical Math. 6:413 (1964).
8. M. Henkel, J. Phys. A: Math. Gen. 21:2617 (1988).
9. F. Y. Wu, Rev. Mod. Phys. 54:235 (1982).
10. D. E. Knuth, The Art of Computer Programming (Addison-Wesley, 1981), Vol. 2, Section 4.3.2.

[^0]: ${ }^{1}$ Theory Division, CERN, CH-1211 Geneva 23, Switzerland, and Supercomputer Computations Research Institute, Florida State University, Tallahassee, Florida 32306.
 ${ }^{2}$ Current address: Thinking Machines Corporation, Cambridge, Massachusetts 02142-1214.

[^1]: ${ }^{a}$ The k 's are the possible energies and $N(k)$ is the exact number of states at that energy. For the Ising model, $N(k)=N\left(k_{\max }-k\right)$ with $k_{\max }=2 L(L-1)$. Hence, only $N(k)$ for $k \leqslant k_{\max } / 2$ are listed.

[^2]: ${ }^{3}$ For some recent numerical studies of these zeros and for references see ref. 5 .

[^3]: ${ }^{a}$ The k 's are the possible values of the energy and $N(k)$ is the number of states at that energy.
 The maximum possible energy is $k_{\max }=2 L(L-1)$.

[^4]: ${ }^{a}$ The last column gives estimates of the ratio α / v from the position of the specific heat peak. The extrapolated result is $\alpha / v=0.453(7)$, as compared to the exact valuc 0.4 . The extrapolated value of β_{c} is $0.9987(18)$, to be compared with the exact result $1.00505 \ldots$.

