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I present a new method to exactly compute the partition function of a class of 
discrete models in arbitrary dimensions. The time for the computation for an 
n-state model on an L a lattice scales like nr~-'nL J. I show examples of the use 
of this method by computing the partition function of the 2D Ising and 3-state 
Potts models for maximum lattice sizes 10 x 10 and 8 x 8, respectively. The criti- 
cal exponents v and c~ and the critical temperature one obtains from these are 
very near the exactly known values. The distribution of zeros of the partition 
function of the Potts model leads to the conjecture that the ratio of the 
amplitudes of the specific heat below and above the critical temperature is unity. 

KEY WORDS:  Potts and Ising models; exact partition function; zeros; 
exponents; scaling. 

In this paper, I will describe a numerica l  method  to compute  exac t l y  the 
par t i t ion funct ion of a certain class of discrete models and  give examples of 

its use in two dimensions.  The inspi ra t ion  for this paper  came from an old 

work by Binder. (1) 
I will illustrate the method  by using the simplest possible example, the 

two-dimens ional  Ising model on  a 2 x 2 lattice. For  the moment ,  consider  

open b o u n d a r y  condit ions.  One  starts by enumera t ing  all states of the two 
spins in the bo t tom row. For  the 2 x 2 lattice, there are four such states and 

they are shown in Fig. 1. It is convenient  to label the states by the b inary  

digits 00, 01, 10, 11 cor responding  to the values of the spins in an obvious 
no ta t ion  that  is very useful in the Ising case. I will choose the energy func- 
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Fig. 1. Configurations of two spins in the bottom row of a 2 x 2 Ising model. The Boltzmann 
weights corresponding to each configuration are written below the configuration. Blank 
squares indicate unfilled lattice sites, and bars connecting squares indicate bonds for which the 
Boltzmann weight is accounted for. 

t ion so that  the energy of  a pair 00 is 0 and that  of a pair 01 is 1. The states 
then have Bol tzmann weight 1, u = e -~, u, and 1, respectively, as shown in 
Fig. 1. Define two arrays Z~ and Z' (S )  with four storage locations each 
(i.e., as many  storage locations as states of the lowest row of spins). 
Initialize Z ~ as follows: 

Z~ = 1, Z~ Z~ = u ,  Z~ = 1 (1) 

Here the a rgument  of  Z n and Z ~ refers to the spins that  are uppermost  in 
each column. N o w  imagine adding a spin on the top left-hand corner site 
with value 0. The configurations will be multiplied by the Bol tzmann 
weights of the vertical bonds  generated by the addit ion of the new spin. 
These are shown in Fig. 2. The information about  these may  be stored in 
Z n by performing the following operat ion:  

Zn(00) = Z~ + uZ~ (2a) 

Z"(01) = Z~ + uZ~ (2b) 

This clearly accounts  for the four states in Fig. 2. For  the case when the 
added spin has value 1 one has to perform two more  operations: 

Z ' ( l O )  = Z~ + uZ~ (3a) 

Z ' ( 1 1 )  = Z~ + uZ~ (3b) 

o o o o 
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Fig. 2. The same as Fig. l, but now with one more site filled up. 
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If one looks at Eqs. (2) and (3) and one imagines what happens (as far as 
the vertical bonds are concerned) when another spin is added in the empty 
upper right-hand corner, one is led to the following general algorithm for 
an L x L system: 

For a spin added at site location i, perform the set of operations 

z " ( s )  = z ~  + uZ~  ') 

on all the states S. In Eq. (4), S is a string of bits, 

and 

(4) 

S' =b lb2 . . . b i . . . bL  (5b) 

where/~i changes 0 to 1 and vice versa. By repeating this algorithm for each 
spin in a row, all the Boltzmann weights for the vertical bonds generated 
are accounted for. After the row is completed, one can then account for the 
horizontal bonds. This is because, given a row of spins in a state 
S = bib2. . ,  bL, one can immediately compute the Boltzmann weight of the 
bonds connecting these spins. It is given by u k, k=Z~s bi@b~+l (for 
open boundary conditions), where @ denotes exclusive OR. Thus, the 
Boltzmann weight for the horizontal bonds for Z(S) is determined from the 
binary representation of S. The lattice is thus built up row by row starting 
from the first row. After all the rows are added, the partition function is 
calculated as 

Z(u) = ~ Z(S) (6) 
S 

The procedure described above obviously generalizes to d dimensions, 
where one builds up the lattice starting from a (d-1)-dimensional  parti- 
tion function. The procedure so far may also be generalized to any model, 
discrete or continuous. 

Let us see now why Binder's algorithm is potentially more efficient 
than the straightforward algorithm of enumerating all the states. The 
reason is that if there is enough storage at one's disposal, the number of 
arithmetic operations performed in the method described is much smaller 
than enumerating all states. To see this, suppose one had a theory where 
each spin takes on n values. In d dimensions, one would then start by 
enumerating all the states of the ( d -  1)-dimensional theory. Thus, Z ~ and 
Z n each need n Ld-1 storage locations. Therefore, the storage requirement 
scales as 

Storage ~2n L~' (7) 

S = b l b 2 . . . b i . . . b L  (5a) 
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Now let us count how many operations are necessary to generate the parti- 
tion function. For each added spin, one has to update all the Z(S) values 
and the algorithm analogous to Eq. (4) has n terms in it. Thus, to add L' 
layers of spins takes 

Operations ~nL~-~nLd 1L' (8) 

steps. On the other hand, the number of states generated is n L'L"-' and this 
is much greater than Eq. (8) for large L, L'. 

Up to this point, the method is just what was in Binder's paper. (1) The 
problem with the method as described so far is that after a lot of computa- 
tions, one ends up with the numerical value for Z at some temperature 1/fl, 
and to calculate Z for any other temperature, one has to repeat the proce- 
dure again. I will show that for a class of models where the energy of a spin 
pair takes on integer values only, the method can be extended to find the 
partition function for any temperature from a single sequence of the opera- 
tions outlined above. For  the rest of this paper, I will therefore restrict 
myself to such systems where the energy of each spin pair is an integer. 

As noted above, the procedure described so far generates the value of 
the partition function at some value of u. To find Z at an arbitrary 
temperature, one would like instead to find the spectral density function 
N(k) defined by 

kmax 
Z(u) = ~, N(k) u k (9) 

k 0 

where N(k) is the number of states of the system at energy k and kma x is 
the maximum possible energy (which is obviously finite, since we are on a 
finite lattice). One can imagine three alternative ways of computing the 
N(k). 

1. Since Z(u) is a polynomial of degree k . . . .  one way to find {N(k)} 
is to calculate Z(u) for kma x + 1 distinct values of u and then solve the 
linear system (9). Unfortunately, this requires that Z(u) be calculated to 
incredible precision, as the coefficient matrix of this system (a Vander- 
monde matrix ~2)) is extremely ill conditioned. One possibility would be to 
use integer values of u and then carry out the computations in exact 
rational arithmetic. This avoids roundoff problems, but even so, the 
number of bits needed to write Z completely will be of order V+ Vlog(V), 
where V = L  d. This is certainly a possible procedure, but it will not be 
considered further here. 

2. A second method is to implement the algorithm in symbolic 
arithmetic: that is, all quantities, instead of being real numbers, are polyno- 
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mials p(u) (with integer coefficients) in the symbolic variable u. What one 
actually stores is, of course, the array of coefficients { ak } ~ o  corresponding 

/ ~ ~ kmax to the polynomial p t u ) =  2-.k =o ak uk. The point is that the two fundamental 
operations in the Binder algorithm--multiplication by u and addition--can 
easily be implemented on polynomials: on the coefficient array {ak}, they 
correspond simply to shift and vector addition, respectively. 

Since operations on polynomials of degree ~<kmax are roughly 
k~ax + 1 ~ dL d times more costly in storage and CPU time than operations 
on real numbers, the computational complexity of this algorithm is given 
by 

Storage ~ 2n # ldLd (10a) 

Operations ~ n r~ lndL 2d- I L' (lOb) 

3. The third method, which is the one used here, is a generalization 
of the second method and in fact includes both the first and the second 
methods as extreme special cases. It has the advantage that it reduces 
storage requirements, at the expense of extra computations. 

Suppose that we carry out the algorithm in symbolic arithmetic, but 
now the dummy variable u is assumed to satisfy the additional relation 

u m = c  (11) 

where m and c are integers. Then, all computations can be carried out with 
polynomials of degree m - 1 only: any higher powers of u are "recycled" 
into the range 0 ~< k ~< m -  1 by inserting the appropriate factors of c. For 
example, if p(u) is the polynomial 

m 1 

p(u)= ~ aku k (12) 
k = 0  

then up(u) is the polynomial 

m - - 1  

~ ( u ) =  ~ d~u x (13) 
k = O  

where 

, ~Cam_ 1 if k = 0  (14) 
a k = ( a k _  l if l<~k<~m--1  

Thus, multiplication by u, which is the crucial step [Eq. (4)] in the 
algorithm, amounts merely to a circular shift and multiply operation on the 
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operation loses information: if at any stage 

where 

Int [ (kma x -- k)/m 3 

gtk ~- E ak+jm cj (17) 
j = 0  

In particular, the output of the algorithm will be the "folded" polyno- 
mial 

m - - I  

Z ( u ) =  ~ Im(k) u k (18) 
k - - 0  

whose coefficients are linear combinations of the N's  multiplied by powers 
of c, namely, 

Int [ (kmax -- k ) / m  ] 

Ira(k) = ~ U ( k + j m ) #  (19) 
j = 0  

It  is therefore necessary to perform runs at several values of the pair 
(m, c) and then combine the results (by solving a suitable linear system of 
equations) so as to reconstruct the {N(k)}. There are many possibilities on 
what values of e and m to choose. One extreme is to set m = 1 and run at 
kmax + 1 dist inct  values of c; this is nothing but method 1 discussed above. 
Another extreme is to set m = k . . . .  + 1 (in which case c is irrelevant). This 
is just method 2. In general, the best choice is to fix m at the largest value 
that is allowed by the available computer  memory  and then run at several 
values of e. The values c = 0 and c -= 1 are particularly convenient. 

For  Ising-like systems, N(k) is symmetric about  k = kmax/2. One can 
therefore get all the N(k) by taking m = 1 + kmax/2 and c = 0. If there is not 
enough storage for this, then one could use m = 1 + k ~ J 4  and do two 
runs, one for c = 0 and another for c = 1. If there are still problems of lack 
of adequate storage, then one can use smaller values of m and other integer 
values of c > 1. However, in this case, one must be careful about  increasing 
the accuracy with which the I ' s  are calculated, because this goes up as the 

{ak}. Of course, this "folding" 
of the algorithm, the true polynomial is 

kxnax 

p(u)= Y~ a k u  ~ (15) 
k - 0  

then this method will represent it by the "folded" polynomial 

rrt--1 

/~(u)= ~ fiku k (16) 
k - O  
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number of bits in c increases [see Eq. (19)]. For  all the examples I have 
studied in this paper, 1 have used c = 0 or c = 1 and the maximum possible 
value of rn so that I could generate all the N's using one or two values of 
c at the most. 

We can now evaluate the computational complexity of this method: 
Suppose first that we take m = 1 + [km~x/2] ~dLd/2 and c =  0. Then, the 
requirements are 

Storage ~n cd 'dL d (20a) 

Operations 1ned lndL2d-lL' (20b) 

If, on the other hand, we take m = 1 + [kma• ] ~ dLa/4 and c = 0, 1, then 
the storage is decreased by a factor of two from the above. However, notice 
that the total number of operations remains the same. This is because, 
although one has to do two runs at the different values of c, each run has 
only half as many operations. In general, if we take rn = 1 + [kmax/2p], 
then one has to use c = 0 ,  1, 2,..., p - 1 .  The storage requirements are 
decreased by a factor [log2(p)]/p, while the total number of operations 
remains the same. 

Thus, the basic idea of the method is the opposite of solving the 
Vandermonde matrix, lnstead of using several values of c and a fixed, small 
value of m, which would require one to solve an ill-conditioned system of 
linear equations, the idea is to use as large an m value as possible with 
some simple small values of c so that there are only very simple equations 
to solve to get the N's from the I's. 

A few important points should be noted before considering examples 
of this technique. First, note that the I's will be large integers. One useful 
way of working with such large integers is to express them as a combina- 
tion of two integers with an understood exponent e. Thus, 

1=  (J~, J2, e) = J l  +J210e (21) 

This allows one to extend the lattice sizes one can analyze, assuming of 
course that there is enough memory and computing power. 

Further, the method as described can be used for systems with open 
or fixed boundary conditions or any combinations of these. One can also 
study systems where d - 1  edges have periodic boundary conditions and 
the remaining one has either open or fixed boundaries. However, the 
method cannot deal with completely periodic boundary conditions without 
an enormous increase in storage [approximately the square of Eq. (7)]. 

I will now present results for the partition function of the two-dimen- 
sional Ising model on lattices with open boundary conditions. Table I gives 
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Table l .  Partit ion Function of 2 D I s i n g  Model on 1 0 x 1 0  
and 9 x 9  Lattices wi th  Open Boundary Conditions a 

k N(k), L= 10 N(k), L = 9  

0 2 2 
1 0 0 
2 8 8 
3 80 72 
4 228 190 
5 480 432 
6 2904 2372 
7 10160 7776 
8 28512 21634 
9 94560 70544 

10 334188 234492 
11 1001600 684336 
12 3024428 2025932 
13 9390320 6080880 
14 28416640 17769272 
15 82962176 50670720 
16 243286762 144436672 
17 706898800 406911200 
18 2023979520 1130610188 
19 5729054800 3107180888 
20 16122614142 8461908280 
21 44911259552 22781518288 
22 123963179176 60668035684 
23 339237864112 159839880584 
24 921006159792 416592162178 
25 2478596355488 1073633622112 
26 6615343595116 2735962636896 
27 17508949583072 6892649260024 
28 45956908921096 17162325923036 
29 119601063089488 42224935085024 
30 308624008346184 102625819853840 
31 789531362631936 246330597987560 
32 2002236996085046 583745350990298 
33 5032702605600208 1365335930718616 
34 12536459497288912 3150846295183988 
35 30943134757697456 7172032090649952 
36 75666085125011546 16096607390244494 
37 183277438049400480 35608145031851608 
38 439653074154090240 77611845404974452 
39 1044290798751834512 166612094830696616 
40 2455601601917768420 352141101485111164 

The k's are the possible energies and N(k) is the exact number of states at that energy. For 
the Ising model, N(k)= N(kmax- k) with km~x- 2L(L 1). Hence, only N(k) for k ~ k,,,ax/2 
are listed. 
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41 
42 
43 
44 
45 
46 
47 
48 
49 
5O 
51 
52 
53 
54 
55 
56 
57 
58 
59 
6O 
61 
62 
63 
64 
65 
66 
67 
68 
69 
7O 
71 
72 
73 
74 
75 
76 
77 
78 
79 
8O 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 

5715191389040815680 
13162814059194332284 
29992843384392276256 
67599071186609390360 
150667233135443195280 
332009284620770925304 
723154384045443755200 
1556520807467290330780 
3309889486768242553104 
6951780615067563927512 
14417496449048455086144 
29517529554446020699914 
59641642457456972380192 
118899403477259922266688 
233802595837168308698272 
453352171299545237693512 
866590747690830006960960 
1632517328306520224110480 
3029971993219284965273792 
5538937392772205864531480 
9969874318295778057009504 
17664247777693175160765184 
30796993030990433209084768 
52819392312885678545436692 
89086835675183403018200384 
147717156491450787191527200 
240717216720664582618430368 
385392505420278103285005328 
606010560730521174349765088 
935618924404472613615285232 
1417820445219880294868836160 
2108188036981214349890853640 
3074872332637786718538528128 
4397846115348289348266362648 
6166177911372741854646839616 
8472780094922056192596717424 
11406278305139367741682022656 
15040025741661918962336070720 
19418830336895331901159821792 
24544617788334280985935169068 
30362906614552756688751417312 
36752464835134069278462022192 
43120676858420742955589180512 
50406827835779589664889986348 
57094646538195969851385893856 
63234097112578433100149657552 
68470776439937110549310951936 
72479675941022541343344445160 
74998874149050740350904095104 
75858264362008705388932311560 

732463626079434728 
1498779830132023700 
3015720617514065464 
5964319529107745650 
11589328787828817456 
22115178532979996228 
41424843026785397752 
76132386821095360478 
137218510027713547336 
242428684682846167112 
419637104618984345232 
711328701410891951820 
1180209924661787853816 
1915688893225844215304 
3040540480740932676272 
4716498283529419247198 
7146857891458317367016 
10573581547941149882100 
1526609784706369752896 
21499288224546805917152 
29519329716772396767416 
39498272853693385575900 
51481355461780817578352 
65334580863611097487494 
80703121534458107878000 
96992501635739079414728 
113383198675792819701304 
128884747013326018242742 
142427993043658173714192 
152985286453100484078072 
159700376205906735578624 
162005092561274395844676 
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Fig .  3, 

Z e r o s :  I s i n g  L = 10 ,  u = e - ~  

' '  ' l  . . . .  I . . . .  I . . . .  I . . . .  I . . . .  
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oO~O oo o %~  ~ o 
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g o 

" 2  - 1  

~ 1 7 6 1 7 6  ~ ~Oo~176 o 

- 2  
L 
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Re(~) 

T h e  z e r o s  o f  t h e  I s i n g  m o d e l  o n  a 10 x 10 l a t t i c e  w i t h  o p e n  b o u n d a r y  c o n d i t i o n s  in 

t he  u = e ~ c o m p l e x  p l a n e .  

N(k) versus k for lattice sizes 10 • 10 and 9 x 9. Since N(k) is symmetric for 
the Ising model I N ( k ) =  N(kma X - k ) ,  kma x ~ - -2L(L-  1)], I have listed only 
half the N(k) values in Table I. Note that the number  of states on a 10 x 10 
lattice is 2 l~176 which is a rather large number. (3t The amount  of computer  
time necessary to generate Table ! was about  1 C P U  min on a 2-processor 
Cray XMP. Whereas there is no intrinsic interest in studying the 2D Ising 
model numerically, one can use these parti t ion functions to see if any useful 
predictions for the exponents and critical temperature can be made from 

I s i n g ,  L = 7  t o  10 

0 . ~  I . . . .  . . . .  I . . . .  I . . . .  L' ' '  l 

0.6 

I 0.4 

5 ~ 

0.g 

0.05 O.t 0.15 0.2 

j/L 2 

Fig .  4. T e s t  o f  s c a l i n g  l a w  [ E q .  ( 2 3 ) ]  f o r  t h e  2 D  I s i n g  m o d e l .  Al l  t h e  z e r o s  in  t h e  f i rs t  

q u a d r a n t  i n s i d e  t h e  u n i t  c i rc le  fo r  L = 7 to  10 h a v e  b e e n  u s e d  in  t he  p l o t .  T h e  l ine  c o n n e c t s  

d a t a  p o i n t s  c o r r e s p o n d i n g  t o  L = 10. 
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exact results on such small systems. In general, I found that if the problem 
can be made to fit in the computer memory, then the method was so 
efficient that the CPU time required was only a few seconds. 

Since Z is a polynomial in u, its analytic structure is completely deter- 
mined by its zeros. (4)'3 Figure 3 shows all the zeros of the 10 x 10 Ising 
system in the complex u plane. Itzykson et al. ~6) showed that the distance 
from the zero closest to the Re(u) axis scales with lattice size L as L 1/,, 
Thus, if uc is the infinite-volume critical point and Ul(L) is the zero closest 
to the Re(u) axis, then, 

Im[u~(L)]  ~ L-1/v[ 1 + O(L-")) l  (22a) 

lu~(Z)-u,,t  ~Z-1/v[1 + O ( Z - ~ ) ]  (22b) 

and 

R e [ u l ( L ) ]  - u c ~ L -  l/v[1 + O ( L  -o~)]  ( 22c )  

In ref. 6 a stronger version of this scaling law is also derived: 

(j   ,,dv 
I . j (L)  - .cJ ~ \ ~ j  (23) 

where j =  1, 2, 3 .... label the zeros in order of increasing distance from u~.. 
Figure 4 shows the test of the scaling law of Eq. (23) for the 2D Ising 
model. 

For this model, 

u,. = ~ - 1 = 0.414213... and v = 1 (24) 

One possible procedure to extract v and uc from the zeros is to estimate v 
from successive L values using Eq. (22a) and then use some finite-size 
extrapolation procedure to find the infinite-volume value of v. After that, 
one could use Eq. (22c) to find u,.. Table Il lists the zeros u1(L) for 
L = 2, 3 ..... 10 and estimators v(L) for v defined by 

log[L/(L + 1)] 
v(L) = log{Im[ul (L)] / Im[ul (L  + 1)]} (25a) 

Two alternate estimators for v are 

log[L/(L + 1)3 
v ( L )  = - 

log[[ul(L) - u,J/lul(L + 1) - u,.] ] 

3 For some recent numerical studies of these zeros and for references see ref. 5. 

(25b) 

822/60/1-2-5 
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Table I1. The Zero Closest to the Re(u) Axis for Various L for the 
Ising Model and the Estimate v(L) of v from Eq. (25a) a 

L Re(ul(L)) Im(ul(L)) v(L) 

2 0 . 0 0 0 0 0 0 0 0 0 0 0  0.41421356237 1.327491 
3 0 . 2 0 1 2 4 8 6 3 4 5 1  0.30519306466 1.163236 
4 0 . 2 6 9 8 2 6 8 9 1 4 4  0.23832440110 1.132630 
5 0 . 3 0 4 4 0 2 5 3 4 4 7  0.19570710834 1.116694 
6 0 . 3 2 5 3 4 0 0 8 8 7 8  0.16622629444 1.105160 
7 0 . 3 3 9 4 3 3 3 3 7 6 2  0.14458498201 1.095899 
8 0 . 3 4 9 5 9 4 2 2 0 3 1  0.12799880987 1.088160 
9 0 . 3 5 7 2 8 1 5 1 2 5 6  0.11486763746 1.081566 

10 0 . 3 6 3 3 0 8 4 5 6 5 8  0.10420557321 

a The extrapolated average value obtained by the BST procedure is v = 1.0033(21). 

and 

log[L/ (L  + 1)3 
v(L) = (25c) 

log{Re[Ul(L) - uc] /Re[ul (L  + 1) - uc] } 

these estimators require, however, an a priori knowledge of uc, Also, it is 
obvious from Eq, (22) that for any of these estimators, 

v(L) = v[1 + O ( L - ~ ) ]  (26) 

The extrapolation procedure that I have found to work best is that of 
Bulirsch and Stoer ~7) (BST), which I will now briefly describe. For  a 
general discussion about this method, see ref. 8. The idea of the extrapola- 
tion procedure is that if T(h) is a function with an expansion 

T(h) = To + al h-~ + ae h-2~~ -b . . .  (27) 

and h N ( N = 0 ,  1, 2,...) is a sequence converging to zero as N ~  oe, then, 
given the values T(hN) for a sequence of values of hN, the desired limit To 
is obtained from a sequence of extrapolants, 

T~oO~ 
T(o 1) T] ~ (28) 
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etc., where the T~m N) are defined as follows: 

T(N) T(N+I) (T(N+I) T(mN)_I) ~ m - -  1 -IV ~ , ~ m  -- 1 - -  

hN --m-1 ~m--1 / - -  
XLk~--'~--~+m/ 1 - -  T ( N + I ) _ T ( N + I ) ]  l 

, ~ m  1 ~ m - -  2 / 

(29a) 

(29b) 

Using this algorithm on the v(L) estimates of Table II, one gets the 
asymptotic estimate 

v = 1.0009, 1.0061, 1.0028 (30) 

from using the data for L = 2-10, L = 3-10, and L = 4-10, respectively. The 
extrapolation is not sensitive to the choice of co and the results quoted are 
for co = 1.0. Using v = 1, one can now compute two estimates for uc by 
using either Eq. (22c) or [ul(L)[ ",, uc + A L  -1/~ via the BST procedure just 
described. One finds 

uc = 0.414200(11) (31) 

in excellent agreement with the exact result [Eq. (24)]. 
I will now generalize the discussion to models where the site variables 

take on n values. For  concreteness and to keep the notation simple, I will 
discuss Z(n)  models in two dimensions. The generalization to arbitrary 
dimension and models should be obvious after the discussion that follows. 

A Z(n)  configuration in one dimension is a set S of L numbers 
{nl, n2,..., nL}, hie [-0, n--  1]. The ni label the Z(n)  angles Oi=2rcni/n. The 
one-dimensional system has n r states, which may conveniently be labeled 
by an integer index, 

Is = nl + nn2 + n 2 n 3  + . . .  + n L -  l r tL  ~ [ 0 ,  n L - -  1] (32) 

Define two arrays Z~ and Zn(S) with as many storage locations as 
states of the 1D system (nL). The analogue of the iteration step of Eq. (4) 
that adds one spin ni at location i is 

n--1 

z"(s)= ') (33) 
nj=O 

where, if 

S =  {nl, n2,..., r/i,.. , r/L} 

S ' =  {nl, n2,..., nj,..., nL} 

(34) 

(35) 



68 B h a n o t  

T a b l e l l l .  P a r t i t i o n  Funct ion  of  8 x 8  and 7 x 7  Pot ts  M o d e l s  ~ 

k N(k), L = 8  N(k), L = 7  

0 3 3 
1 0 0 
2 24 24 
3 192 168 
4 552 462 
5 2088 1824 
6 11304 8928 
7 41664 31392 
8 148386 111684 
9 587688 423216 

10 2193300 1510572 
11 7720728 5209944 
12 27537474 18065964 
13 97132296 61574472 
14 334271004 206061780 
15 1137947376 682080864 
16 3843421530 2231687358 
17 12818773296 7204443672 
18 42298227456 22974767664 
19 138314323008 72364170912 
20 448089240318 225026403222 
21 1438146998664 690610737672 
22 4574963788656 2091155349516 
23 14425679275296 6243838334808 
24 45084393148710 18373853627526 
25 139648935821064 53255451879384 
26 428680498713156 151934469419988 
27 1303884760918824 426346021158288 
28 3928871392273452 1175846544042816 
29 11725097717341728 3184673584497912 
30 34647163889868624 8463104247723672 
31 101341900685306232 22046901347978448 
32 293316951182710806 56247151958954040 
33 839762821791103608 140394144730039800 
34 2377287574813856616 342477392173729128 
35 6651755879018772480 815579022852671736 
36 18388012681028246742 1893850948922891904 
37 50197507759057494528 4282946591792482368 
38 135261530391980304528 9421173493821644760 
39 359582171737685788248 20130654579263172240 
40 942609542987942012364 41725664029037517546 
41 2435256118061086047552 83776129533272914272 
42 6197222628225402131196 162692100725406071196 

a The k's are the possible values of the energy and N(k) is the number of states at that energy. 
The maximum possible energy is kma ~ = 2L(L - 1). 
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Table III. (Cont&ued) 

43 
44 
45 
46 
47 
48 
49 
5O 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
7O 
71 
72 
73 
74 
75 
76 
77 
78 
79 
8O 
81 
82 
83 
84 
85 
86 
87 
88 
89 

15525331268690663280216 
38266501591607687448702 
92739457153227664217544 
220852825261841467774536 
516475249506545288311200 
1185251316794994427627662 
2667365992539518807415072 
5882384615988642900476148 
12702839736061440463070376 
26840668946589754259676888 
55448545852349178985402152 
111902904244440315648204204 
220438862509400023281234456 
423509755844911966131943386 
792852114394772914813063968 
1445082082708563003200717988 
2561984040351484274712667992 
4414190770715645825333111376 
7384487823103609249586152728 
11983575350216845651701030252 
18847406776901530038840755136 
28702569821938615406283871536 
42286674107265855479396703384 
60216659100912854864184775656 
82810752689432279070373530696 
109888579695433911676772905944 
140594239184271472970682554376 
173301245129355686661942833760 
205656994667551360625028442104 
234801608012523583186410329658 
257752570217498791662403969224 
271893301558452182289236489328 
275459037927479172777454264728 
267896641445797602342148889448 
249997506757499950167839421744 
223760992596476098331786106996 
192020982026221584599113086888 
157933469393418469133577041844 
124455308426597643394601582784 
93933916098635721361446124176 
67882328800513023649649676960 
46953430232080538221573099950 
31073935957604141376395970168 
19668537504816747494192265600 
11901584764535848096088822256 
6881463691876048042749443808 
3799769165333395330805121288 

305125905414307569912 
551794823492840197644 
960654116676351255216 
1607467280678385203208 
2581029757581048927600 
3970194201945262150176 
5841173600439883203384 
8206876906647453549192 
10994910494946859758312 
14025648539287777952328 
17013565092668829899472 
19601081472428069208468 
21423923022906475914096 
22193482879885189229832 
21771179708605905705072 
20208583131061984494552 
17737512051220595306352 
14712540247365904408134 
11525918044389093098712 
8523526812396935480436 
5946726105595443369456 
3911943600136797267570 
2424780640971368785056 
1415073756435154716312 
776800161495415847832 
400660425263642790030 
193904875439535065760 
87907143578625315684 
37256344099024673568 
14724351321410949000 
5410091775761568144 
1841059284810225696 
577550284153252512 
166040211143267904 
43418679825191256 
10226640750772884 
2141358146070576 
391387088304576 
60773967560208 
7674121598604 
725187096504 
41869995708 
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Table III. (Continued) 

90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 

2002421821386729970447589172 
1006364364920951693202042480 
481932011135808455486626278 
219693973804473428011517736 
95225835793120795037283276 
39193831062265263418409160 
15294462722635606819146042 
5648323125066230867259648 
1969949490857815597348560 
647233697269536071777568 
199738188211753448316636 
57694563236897928233520 
15532995049768573552992 
3877925335950604678368 
892119601906523571432 
187616547858204828816 
35701326530842588188 
6063375007720464072 
901707099455080434 
114132122957405952 
11738897145225828 
897937832100888 
40724629633188 

and f ( n i ,  nj) is the energy of a pair of nearest neighbor spins with Z ( n )  
angles specified by the integers ni, nj. One must perform the iteration step 
of Eq. (33) once over all the S's for each spin added. In fact, Eq. (33) is 
valid for any model and can even be generalized to continuous models by 
replacing the sum by an integral. However, the procedure is simplest f ~  
discrete models and when f is an integer-valued function, so that Z is a 
polynomial in u = e -~. I will restrict myself to this case only. 

Specifically, for the Z ( n )  model, one can make f have the required 
property and still remain in the correct universality class. Define 

f ( n i ,  nj) = mini  [rl i - -  nil, n -- [ n i -  nil ] (36) 

This function has the merit of restricting the energy to integer values. 
One can also write f as a finite Fourier series in terms of the Z ( n )  angles 
O~ = 2 ~ ( n i -  nj)/n. For even n, 

f ( n i ,  n j)  = f ( n i  - n j)  = f (O~)  

/7 n--1 1 - ( - - 1 )  k 1 

= -4 - k~=l n 1 - cos(27rk/n)  
c o s ( k O o .  ) (37) 
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Fig. 5. 

Zeros:  Por t s ,  L=8, u = e  -/5' 

3 . . . .  I . . . .  I . . . .  I . . . .  [ . . . .  I . . . .  

2 Oo o~ 

, o 

1 0 ~176 
~ o 0 %* 

Z o 

- 1  ~~ ~ 
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~ 
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- 3  -B  - 1  0 1 

Re(u) 

Zeros  of the 8 • 8 Po t t s  model  wi th  open b o u n d a r y  condi t ions  in the complex  u = e z 

plane. 

It is obvious that the theory defined by the energy function of Eq. (36) has 
the same vacuum state as the usual Z(n) theory because the ground state 
has all spins aligned. 

As a nontrivial example, consider the Z(3) model (also called the 
3-state Potts model4). Here, ni = 0, 1, 2 and 

f ( n i ,  n j )  = 1 - -  6 ( n i ,  n j )  ~ [0,  1 ] (38) 

4 See ref. 9 for a comprehens ive  view of t h e  P o t t s  model .  

Table IV, The First Zero for the Potts Model for Various 
L Values and the Estimates v(L) of v from Eq. (25) a 

v(L) v(L) v(L) 
L R e [ u l ( L ) ]  I m [ u l ( L ) ]  E q . ( 2 5 a )  E q . ( 2 5 b )  E q . ( 2 5 c )  

2 0.02906309100 0.28739427521 1.536578 0.9506645 0.6866508 
3 0.17933073658 0.22073871857 1.177574 0.9823404 0.7780325 

4 0.23703749401 0.17289408198 1.091044 0.9816150 0.8231159 

5 0.26766654497 0.14091489903 1.045968 0.9731017 0.8469487 

6 0.28671621031 0.11837377826 1.016353 0.9632042 0.8602000 
7 0.29972800675 0.10171522195 0.994788 0.9537328 0.8677652 
8 0.30918364569 0.08893857422 

a T h e  e x a c t l y  k n o w n  v a l u e  of uc = ( ~ / 3 - 1 ) / 2  is  u s e d  in co lumns  5 and 6. U s i n g  t h e  BST 

procedure,~'one ob ta ins  f rom co lumns  4, 5, and  6 tha t  v = 0.8386, 0.8328, and  0.8479 from 

t h e  L = 2 8 da ta  and  v = 0.8342, 0.8445, and  0.8399 from the L = 3-8 d a t a .  
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Ports, L=6 to 8 

0.6 

0.5 

0.4 

,~ 0.3 

0.g 

0.I 0.05 0,1 0,15 0.2 0.25 
j /L  e 

Fig. 6. Test  of  scal ing law [-Eq. (23)] for the Potts  m o d e l  on  lattices of  size L = 6 - 8 .  All 
zeros  in the first quadrant  are included.  The  straight line connects  the L = 8 data.  

Table III shows the partition function of this model computed by the 
method described above for 7 x 7 and 8 x 8 lattices. Note  again that a very 
large number of states (~21~176 has been generated. Figure 5 plots all the 
zeros for the 8 x 8 lattice and Table IV lists the first zero for various L 
values and estimates of v(L) using Eq, (25). The critical coupling and the 
exponents of this model are also known: u , =  ( x / 3 - 1 ) / 2  and v =  5/6. 
Using the BST procedure, one can extrapolate the v(L) values of Table IV 
to L =  oe and estimate v. The results are given in Table IV and are 
surprisingly close to the correct result, given the small lattice sizes used. 

Ports model ,  L - 2 to 8 

.... I .... I .... [ .... I 
0.8 

0.6 

m 
0 0.4 
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0.0 l 
0 0,*5 1 i ,6 2 

Fig. 7. The  specific heat  at constant  v o l u m e  C,, o f  the Potts mode l  as a funct ion of/~ for 
var ious  latt ice sizes ( L =  2-8). 
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Figure 6 is a test of the scaling law of Eq. (23) and the scaling seems 
to work much better for the Potts model than for the Ising model. Figure 7 
plots the specific heat of the model, defined by 

~72 log Z 
C ~ -  ~?fi2 (39) 

The peak of the specific heat scales like L ~/v and Table V shows the fl value 
at the peak, Co at the peak, and the critical exponent estimates extracted 
from the C~ peak. These estimates of fl,(L) and e(L)/v(L) can be 
extrapolated to L = oo to give estimates of tic and c(v, which are given in 
Table V and are again very close to the correct values. 

Finally, ref. 6 also relates the critical exponent c~ to the angle ~b that the 
line of zeros of Z makes with the Re(u) axis and the ratio A _ / A  + of the 
specific heat amplitude below and above the critical temperature (which is 
a universal quantity). The result [ref. 6, Eq. (1)] is 

cos (~e ) -  A /A + 
t a n [ ( 2 -  ~)~] = (40) 

sin(~cz) 

Figure 8 shows the angle ~b versus 1/L. The horizontal line is the infinite- 
volume extrapolation, which gives ~b = 0.968(2)~/2. The error comes from 
the extrapolation and is estimated by using different sets of L values to 
make the extrapolation. If one uses this result for ~b in Eq. (40), one finds 
A_/A+ = 1.10(07). Since this value is so close to unity and the angle ~b is 
so close to ~/2, I would conjecture that for the Potts model, 

~b = ~/2 and A / A + = I  (41) 

Table V. The Location of the Peak of the Specific H e a t  C v 

and Its Maximum Value as a Function of L a 

L fl(peak) C~(peak) a/v(L) 

2 1.1345095 0.3422606 0.59470295 
3 1.1639425 0.4355910 0.60281669 
4 1.1548822 0.5180767 0.59824105 
5 1.1410812 0.5920653 0.59139593 
6 1.1279001 0.6594731 0.58428310 
7 1.1163123 0.7216273 0.57747388 
8 1.1063324 0.7794743 

a The last column gives estimates of the ratio ~/v from the position of the specific heat peak. 
The extrapolated result is c~/v=0.453(7), as compared to the exact value 0.4. The 
extrapolated value of tic is 0.9987(18), to be compared with the exact result 1.00505 .... 
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Ports model, angle from first two zeros 
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Fig. 8. The angle ~ at which the extrapolated line of zeros intersects the Re(u) axis. The 
horizontal line is the extrapolated L = o~ result using the BST formula [Eq. (29)]. 

In summary, I have described a method that can compute the parti- 
tion function of certain classes of discrete models (those whose energy takes 
integer values). Although one is limited to small lattices, the lattice sizes 
seem sufficient to extract useful information about critical couplings and 
exponents. One might even hope that by studying the analytic structure of 
the theory via the zeros of the partition function on small volumes, one 
might be able to guess the complete analytic solution. In fact, the zeros in 
Fig. 5 near the Re(u) axis seem to behave very much like a conic section. 
This is also in agreement with the observation that the angle ~b at which the 
line of zeros meets the Re(u) axis is almost ~/2. If this is borne out by 
studies on larger lattices, one could write down the analytic form for the 
critical part of the free energy of the Potts model in 2 dimensions. This 
point is currently being studied. 

Finally, the algorithm described in this paper has some similarity with 
the manipulation of very large integers using residue arithmetic modulo 
several different primes. (1~ 
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